Interpret Quadratics Using Real World Scenarios

	Period:	Date:	
Directions: Use the i	nformation given to solve each problem.		
above the gro	aunched at an upward velocity of 72 feet per second bund. Use the vertical motion equation $h=-16t^{\prime}$ object, c is the initial height, in feet, of the object, c	c^2+vt+c , where h is the ending	
How long will	How long will it take the object to reach the maximum height, and what is the maximum height?		
	nks with the appropriate values. econds, the object's maximum height will be	feet.	
•	aunched at an upward velocity of 120 feet per sense ground. Use the vertical motion equation $h=\displaystyle \frac{1}{2}$		
How long wil	ll it take the object to reach the maximum height	t, and what is the maximum height?	
Fill in the bla	nks with the appropriate values.		
At s	econds, the object's maximum height will be	feet.	
•	aunched at an upward velocity of 50 feet per seconound. Use the vertical motion equation $h=-16t^{\prime}$,	
How long will	it take the object to reach the maximum height, a	and what is the maximum height?	
Fill in the blar	nks with the appropriate values.		
	econds, the object's maximum height will be	feet	

4.	An object is launched at an upward velocity of 88 feet per second from the top of a building 250 feet above the ground. Use the vertical motion equation $h=-16t^2+vt+c$.		
	How long will it take the object to reach the maximum height, and what is the maximum height?		
	Fill in the blanks with the appropriate values. At seconds, the object's maximum height will be feet.		
5.	An object is launched at an upward velocity of 140 feet per second from the top of a building 300 feet above the ground. Use the vertical motion equation $h=-16t^2+vt+c$. How long will it take the object to reach the maximum height, and what is the maximum height?		
	Fill in the blanks with the appropriate values. At seconds, the object's maximum height will be feet.		

1. An object is launched at an upward velocity of 72 feet per second from the top of a building 200 feet above the ground.

Vertical motion equation:

$$h = -16t^2 + vt + c$$

Where:

- ullet v=72 feet per second
- c=200 feet

To find the maximum height and the time it takes to reach it:

The time to reach the maximum height occurs at the vertex of the parabola, which is given by the

formula:

$$h = -16t^2 + 72t + 200$$
 or graph the equation $y = -16x^2 + 72x + 200$

2. An object is launched at an upward velocity of 120 feet per second from the top of a building 150 feet above the ground.

Vertical motion equation:

$$h = -16t^2 + vt + c$$

Where

- ullet v=120 feet per second
- c = 150 feet

To find the time to reach the maximum height:

$$h = -16t^2 + 120t + 150$$
 or graph the equation $y = -16t^2 + 120t + 150$

An object is launched at an upward velocity of 50 feet per second from the top of a building 100 feet above the ground.

Vertical motion equation:

$$h = -16t^2 + vt + c$$

Where:

- v = 50 feet per second
- c = 100 feet

To find the time to reach the maximum height:

$$h = -16t^2 + 50t + 100$$
 or graph the equation $y = -16t^2 + 50t + 100$

Answer:

At 1.5625 seconds, the object's maximum height will be 139.06 feet.

An object is launched at an upward velocity of 88 feet per second from the top of a building 250 feet above the ground.

Vertical motion equation:

$$h = -16t^2 + vt + c$$

Where:

- v=88 feet per second
- c = 250 feet

To find the time to reach the maximum height:

$$h = -16t^2 + 88t + 250$$
 or graph the equation $y = -16t^2 + 88t + 250$

Answer:

At 2.75 seconds, the object's maximum height will be 371 feet.

An object is launched at an upward velocity of 140 feet per second from the top of a building 300 feet above the ground.

Vertical motion equation:

$$h = -16t^2 + vt + c$$

Where:

- v = 140 feet per second
- c = 300 feet

To find the time to reach the maximum height:

$$h = -16t^2 + 140t + 300$$
 or graph the equation $y = -16t^2 + 140t + 300$

